
COLLECTIONS

STACKS & QUEUES

The central property of many data structures is that one element is always easiest
to get at. Usually this depends on when they were put into the structure

E.G Queues at a bank, supermarket etc are FIFO. The oldest out first is a queue.
A stack of books is LIFO where the youngest is out first.

A queue supports insert(enque) and get oldest(deque).
A stack supports insert(push) and get youngest(pop)

For both stacks and queues we need to know if they are full or empty.
For both the exam boards like to populate via arrays but you need to
know the disadvantages and that linked lists where you can efficiently
insert and remove elements from both ends may be better for a queue.

Why not draw a stack or queue to help you remember the pseudocode?

STACKS –ONE TOP POINTER NEEDED
PLUS ARRAY INDEX

stackTop =0

Push(element,stack)
if FULL(stack)

then
Output “Stack full”

else
stackTop = stackTop +1
stack[stackTop } = element

Pop(stack)
if EMPTY(stack)

then
output “Stack is empty”

else
element =stack(stackTop)
stackTop = stackTop-1
return element

EMPTY(stack)
if stackTop = 0

then return true
else return false

FULL(stack)
if stackTop = stack,size

then return true
else return false

QUEUE -2 POINTERS NEEDED PLUS INDEX

If this is in paper 2 then there will be a scenario. So for Q for example put
employees or whatever the array contains

front, rear = -1
Enque(element,Q)

if FULL(Q)
then

Output “Queue is full”
else if EMPTY

front = 0, rear = 0
else

rear = rear +1
Q[rear] = element

Deque(Q)
if EMPTY(q)

then
output “Queue is empty”

else if front ==rear
front = rear -1

else front= front+1

EMPTY(Q)
if front & rear = -1

then return true
else return false

FULL(Q)
if rear !=-1

then return true
else return false

CIRCULAR QUEUES

Using an array for a linear queue is easy to implement in code. However it
does mean memory useage is inefficient as the memory location isn’t reused
when a deque takes place. In a normal theatre queue people shuffle up into the
the space.

In a circular queue when the end is reached it tries to reuse memory by going into
the first. We will need pointers for each element though and this is harder to
implement, taking up space and we still have the limitations of fixed arrays.

	Collections
	Stacks & Queues
	STACKS –One top pointer needed Plus aRray index
	Queue -2 pointers needed plus index�
	Slide Number 5
	Circular Queues

